二元一次方程组教案

时间:2024-07-15 23:42:55
二元一次方程组教案

二元一次方程组教案

作为一名教师,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么你有了解过教案吗?以下是小编收集整理的二元一次方程组教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

二元一次方程组教案1

教学建议

一、重点、难点分析

本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

二、知识结构

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

一、素质教育目标

(一)知识教学点

1.掌握用代入法解二元一次方程组的步骤.

2.熟练运用代入法解简单的二元一次方程组.

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,尝试指导法.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会用代入法解二元一次方程组.

(二)难点

灵活运用代入法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

七、教学步骤

(-)明确目标

本节课我们将学习用代入法求二元一次方程组的解.

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(三)教学步骤

1.创设情境,复习导入

(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

(2)选择题:

二元一次方程组 的解是

A. B. C. D.

第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入,可以激发学生的求知欲.

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

设买了香蕉 千克,那么苹果买了 千克,根据题意,得

设买了香蕉 千克,买了苹果 千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

解:由①得: ③

把③代入②,得:

把 代入③,得:

解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

例1 解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

(3)求出 后代入哪个方程中求 比较简单?(①)

学生活动:依次回答问题后,教师板书

解:把①代入②,得< ……此处隐藏21314个字……消元法简单。

师:二元一次方程组的图象解法既不比代数解法简单,且得到的解又是近似的,为什么我们还要学习这种解法呢?原因有以下几个方面:一是要让我们学会从多种角度思考问题,用多种方法解决问题;二是说明了“数”与“形”存在着这样或那样的密切联系,有时我们要从“数”的角度去考虑“形”的问题,有时我们又要从“形”的角度去考虑“数”的问题,这里是从“形”的角度来考虑“数”的问题;三是为了以后进一步学习的需要。

师:看来大家都很爱动脑筋,那么接下来我们将例题加以变化。

六、例题变式

题目:用图象法求解二元一次方程组时,两条直线相交于点(2,-4),求一次函数的关系式。

师:请一位同学来分析一下。

生:由两条直线的交点坐标(2,-4)可知,二元一次方程组的解就是,把代入到二元一次方程组中,可得:,解得,所以一次函数的关系式为。

师:非常好!

七、感悟归纳

师:再请同学们思考,如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组的解是什么呢?

生:我想如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组应该无解。

八、拓宽提升

题目:不画函数的图象,判断下列两条直线是否有交点?它们的位置关系如何?每组一次函数中的有什么关系?

(1)与;

(2)与

师:你会怎样分析这道题?

生:我们只要求解一下由这两个一次函数所组成的二元一次方程组的解的情况就可以判断两条直线的位置关系。如果方程组有解,那么相应的两条直线就是相交,如果方程组无解,那么相应的两条直线就是平行的位置关系。

师:很好!抽象成一般结论怎样叙述?

生:对于直线与,当时,两直线平行;当时,两直线相交。

九、例题再探

题目:利用一次函数的图象解二元一次方程组

问:(1)这两条直线有什么特殊的位置关系?

(2)这两个一次函数的有何特殊的关系?

(3)由此,你能得出怎样的结论?

师:哪位同学来尝试一下?

生:(1)这两条直线是垂直的位置关系;

(2)这两个一次函数的相乘的结果等于-1;

(3)仿照刚才的结论,我得出的结论是:对于直线与,当时,两直线垂直。

师:太棒了!那下面的这一题你会做吗?

题目:已知直线和直线

(1)若,求的值;

(2)若,求垂足的坐标。

师:谁来试一下?

生:由前面的结论我们可以得出,如果,则,解得:;如果,则,解得,将代入二元一次方程组,可得,求出方程组的解就可以得出垂足的坐标。

十、学会创新

师:请你根据这节课中的例题(或习题)在学案中编(或出)一道题。看谁出的题新颖、精妙!

生:(畅所欲言,踊跃尝试)

十一、小结与思考

师:(1)这节课你学到了什么?

(2)你还存在哪些疑问?

生:(分组讨论,代表发言总结)

【设计说明】

本节课的两个知识点:二元一次方程和一次函数的关系,二元一次方程组的图象解法对于学生来说都是难点。就本节课而言,前者较为重要,后者难度较大。确定本节课的重点为前者,是因为学生必须首先理解二元一次方程和一次函数在数与形两方面的联系,在此基础上才能解决好后面的难点。在重难点的处理上,为了解决学生对重点的理解,用一组二元一次方程组串起一节课,加以变式,既使得学生理解了重点内容,又为后面的难点突破留下了一定的时间和空间。本节课的教学,主要以问题为线索,注重引导学生仔细观察、独立思考、认真操作、分组讨论、合作交流、师生互动,这对本节课的重难点的突破还是有效的,同时也体现了新课改提倡的学生的“自主、合作、探究”的学习方式的培养。另外,对利用二元一次方程组的解判断直线的位置关系作为补充,渗透数形结合思想,也对教学目标中的情感态度和价值观的又一方面体现。

【教学反思】

这节课以“回顾、先思”为先导,以“操作、思考”为手段,以“数、形结合”为要求,以“引导探究,变式拓宽”为主线,从旧知引入,自然过渡、不落痕迹。首先提出学生所熟知的二元一次方程并讨论其解的情况,为后面探究二元一次方程与一次函数之间的关系作了必要的准备,结构安排自然、紧凑。在操作中,提出问题、深化认识。一切知识来自于实践。只有实践,才能发现问题、提出问题;只有实践,才能把握知识、深化认识。先让学生画出一次函数的图象,在画图的过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图象上。”在应用结论探索一元二次方程组的图象解法时,也是在操作中来发现问题。这样,就给了学生充分体验、自主探索知识的机会;使他们在自主探索、合作交流中找到了快乐,深化了认识。以能力培养为核心,引导探究为主线,数、形结合为要求。能力培养,特别是创新能力的培养是新课程关注的焦点。能力培养是以自主探究为平台。“自主”不是一盘散沙,“探究”不是漫无边际。要提高探究的质量和效益必须在教师的引导下进行。为达到这一目的,教案中设计了“探究导学”、“例题变式”、“例题再探”、“学会创新”和“拓展提升”。新课程理念指出:教师是课程的研究者和开发者。这就要求我们:在新课程标准的指导下,认真研究教材,体会教材的编写意图。在此基础上,设计出既体现课程精神,又适合本班学生实际的教学案例。本节课前半部分时间有些慢,后半部分例题再探和学会创新时间不够。建议有针对性的学生板演多一点,进一步加强双基的落实。

【同伴点评】

本节课教师创设问题情境,引导学生观察、思考、操作、探究、合作交流。问题的设计层层递进,通过问题的逐一解决,师生最终形成共识,达到了揭示二元一次方程组与一次函数的图象关系的目的。(李晓红)

在例题教学及学生动手尝试时,教师在学生大胆尝试之后给出解题过程,强调了解题的规范性,有利于培养学生的严谨认真的学习态度。同时强调了由于二元一次方程组的图象解法得到的解往往是近似的,因此必须检验。教师对学习二元一次方程组的图象解法的必要性的解释,是非常有必要的,这一解释解决了学生的疑惑,同时也渗透了数形结合思想,也是教学目标中的情感态度和价值观的体现。对于这一解释,相当一部分教师在这一节课中并没有很好解决。这一处理方法值得他人借鉴。(丁叶谦)

本节课老师准备充分,教学环节紧紧相扣。授课老师充分体现了课题:“先思后导,变式拓宽教学设计”的精神,不断地创设问题情境,引导学生学习新知,在探索二元一次方程组的图象解法时给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。同时对例题连续的再利用,不断变化,让学生在变式中不断丰富对二元一次方程组图象解法的认识,充分认识二元一次方程组图象解法的实用性,学会创新环节的设计更是极大地调动学生学习的积极性。教师教态亲切,语言生动,娓娓道来。

《二元一次方程组教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式