四年级《三角形内角和》教学设计
作为一名人民教师,可能需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。那么什么样的教学设计才是好的呢?下面是小编为大家整理的四年级《三角形内角和》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
四年级《三角形内角和》教学设计1知识与技能
1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。
2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。
情感态度与价值观
3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。
教学重点:
1、探索和发现三角形三个内角和的度数和等于180o。
2、已知三角形的两个角的度数,会求出第三个角的度数。
教学难点:
已知三角形的两个角的度数,会求出第三个角的度数。
方法与过程
教法:主动探究法、实验操作法。
学法:小组合作交流法
教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。
教学课时:1课时
教学过程
一、预习检查
说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。
二、情景导入呈现目标
故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。
三、探究新知
自主学习
1、活动一、比一比2、活动二、量一量
(1)什么是内角?
(2)如何得到一个三角形的内角和?
(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。
(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。
3、说一说,做一做。
(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。
(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。
四、当堂训练(小黑板出示内容)
1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。
2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。
3、三角形具有()性。
4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。
5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。
6、交流学案第三题。 先独立做,最后组内交流。
五、点拨升华
任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。
六、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。
七、拓展提高
妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。
板书设计:
三角形的内角和
测量三个角的度数求和:结论:
教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。
四年级《三角形内角和》教学设计2教学内容:
义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.
教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备:
多媒体课件、学具。
教学过程:
一、激趣引入
(一)认识三角形内角
1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)
2.请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
(二)设疑,激发学生探究新知的心理
1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
学生安要求画三角形.
2.问:有谁画出来啦?
(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!
二、动手操作,探究新知
(一)研究特殊三角形的内角和
1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)
学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)
这个三角形各角的度数。它们的和是多少?
学生回答:是180°。
追问:你是怎样知 ……此处隐藏5428个字……是180°,所以推理得出三角形内角和是180°。
生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。
这些方法都验证了:三角形的内角和是180°。
师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?
师:有没有人质疑,用什么方法验证?
生用自己剪的任意三角形再次验证三角形内角和是否180°。
生:得出内角和还是180°。
师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。
师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?
生:三角形的内角和是180°。
师:看来我们的猜想是正确的。
师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。
解释
运用拓展
课件
正方形纸
让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。
1.∠1=40°,∠2=48°,求∠3有多少度?
2.算出下面三角形∠3的度数。
⑴∠1=42°,∠2=38°,∠3=?
⑵∠1=28°,∠2=62°,∠3=?
⑶∠1=80°,∠2=56°,∠3=?
师:你是怎样算的?这三个三角形各是什么三角形?
提问:在一个三角形中最多有几个钝角?
在一个三角形中最多有几个直角?
3.游戏:将准备的正方形纸对折成一个三角形?
师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?
说明:三角形大小变了,内角和不变。
4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
说明:三角形形状变了,内角和不变。
5.根据所学知识,你能想办法求出下面图形的内角和吗?
板书
设计
三角形内角和
①号 钝角三角形 内角和180°
②号 锐角三角形 内角和180°
三角形内角和是180°
③号 直角三角形 内角和180°
④号 直角三角形 内角和180°
⑤号 钝角三角形 内角和180°
⑥号 锐角三角形 内角和180°
学具教具准备
课件三角形纸片量角器正方形纸
四年级《三角形内角和》教学设计7教学目标:
1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:
课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、课件出示三角形的争吵画面
锐角三角形:我的内角和度数最大。
直角三角形:不对,是我们直角三角形的内角和最大。
钝角三角形:你们别吵了,还是钝角三角形的内角和最大。
师:此时,你想对它们说点什么呢?
2、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和(课件)
师:内角和指的是什么?
生:三角形的三个内角的度数的和,就是三角形的内角和。
2、看一看,算一算。
师:算一算两个三角尺的内角和是多少度?(课件)
学生计算
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3、操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4、学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
师:此时,你想对争论的三个三角形说些什么呢?
5、小结。
三角形的内角和是180度。
三、解决相关问题
1、在能组成三角形的三个角后面画“√”(课件)
2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)
3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)
四、练习巩固
1、看图,求三角形中未知角的度数。(课件)
2、求三角形各个角的度数。(课件)
五、总结。
师:这节课你有什么收获?
六、板书设计:
三角形的内角和是180°
文档为doc格式